
www.manaraa.com

Distributed Intelligent AgentsKatia Sycara Keith Decker Anandeep PannuMike WilliamsonDajun ZengThe Robotics InstituteCarnegie Mellon UniversityPittsburgh, PA 15213, U.S.A.Voice: (412) 268-8825 Fax: (412) 268-5569URL: http://www.cs.cmu.edu/�softagents/AbstractWe are investigating techniques for developing distributed andadaptive collections of agents that coordinate to retrieve, �lter andfuse information relevant to the user, task and situation, as well asanticipate a user's information needs. In our system of agents, in-formation gathering is seamlessly integrated with decision support.The task for which particular information is requested of the agentsdoes not remain in the user's head but it is explicitly represented andsupported through agent collaboration. In this paper we present thedistributed system architecture, agent collaboration interactions, anda reusable set of software components for constructing agents. Wecall this reusable multi-agent computational infrastructure RETSINA(Reusable Task Structure-based Intelligent Network Agents). It hasthree types of agents. Interface agents interact with the user receivinguser speci�cations and delivering results. They acquire, model, andutilize user preferences to guide system coordination in support ofthe user's tasks. Task agents help users perform tasks by formulatingproblem solving plans and carrying out these plans through queryingand exchanging information with other software agents. Informationagents provide intelligent access to a heterogeneous collection of infor-mation sources. We have implemented this system framework and are

www.manaraa.com

developing collaborating agents in diverse complex real world tasks,such as organizational decision making (the PLEIADES system), and�nancial portfolio management (the WARREN system).1 IntroductionE�ective use of the Internet by humans or decision support machine sys-tems has been hampered by some dominant characteristics of the Infosphere.First, information available from the net is unorganized, multi-modal, anddistributed on server sites all over the world. Second, the number and va-riety of data sources and services is dramatically increasing every day. Fur-thermore, the availability, type and reliability of information services areconstantly changing. Third, information is ambiguous and possibly erro-neous due to the dynamic nature of the information sources and potentialinformation updating and maintenance problems. Therefore, information isbecoming increasingly di�cult for a person or machine system to collect, �l-ter, evaluate, and use in problem solving. As a result, the problem of locatinginformation sources, accessing, �ltering, and integrating information in sup-port of decision making, as well as coordinating information retrieval andproblem solving e�orts of information sources and decision-making systemshas become a very critical task.The notion of Intelligent Software Agents (e.g., [1, 19, 20, 25, 13, 22])has been proposed to address this challenge. Although a precise de�nitionof an intelligent agent is still forthcoming, the current working notion is thatIntelligent Software Agents are programs that act on behalf of their humanusers in order to perform laborious information gathering tasks, such as lo-cating and accessing information from various on-line information sources,resolving inconsistencies in the retrieved information, �ltering away irrele-vant or unwanted information, integrating information from heterogeneousinformation sources and adapting over time to their human users' informa-tion needs and the shape of the Infosphere. Most current agent-orientedapproaches have focussed on what we call interface agents|a single agentwith simple knowledge and problem solving capabilities whose main task isinformation �ltering to alleviate the user's cognitive overload (e.g., [15, 16]).Another type of agent is the Softbot ([6]), a single agent with general knowl-edge that performs a wide range of user-delegated information-�nding tasks.2

www.manaraa.com

We believe that such centralized approaches have several limitations. A sin-gle general agent would need an enormous amount of knowledge to be able todeal e�ectively with user information requests that cover a variety of tasks.In addition, a centralized system constitutes a processing bottleneck and a\single point of failure". Finally, because of the complexity of the infor-mation �nding and �ltering task, and the large amount of information, therequired processing would overwhelm a single agent.Another proposed solution is to address the problem by using multi-agentsystems to access, �lter, evaluate, and integrate this information [23, 17].Such multi-agent systems can compartmentalize specialized task knowledge,organize themselves to avoid processing bottlenecks, and can be built ex-pressly to deal with dynamic changes in the agent and information-sourcelandscape. In addition, multiple intelligent coordinating agents are ideallysuited to the predominant characteristics of the Infosphere, such as the het-erogeneity of the information sources, the diversity of information gatheringand problem solving tasks that the gathered information supports, and thepresence of multiple users with related information needs. We therefore be-lieve that a distributed approach is superior, and possibly the only one thatwould work for information gathering and coherent information fusion.The context of multi-agent systems widens the notion of intelligent agentin at least two general ways. First, an agent's \user" that imparts goals toit and delegates tasks might be not only a human but also another agent.Second, an agent must have been designed with explicit mechanisms for com-municating and interacting with other agents. Our notion is that such multiagent systems may comprise interface agents tied closely to an individualhuman's goals, task agents involved in the processes associated with arbi-trary problem-solving tasks, and information agents that are closely tied toa source or sources of data. An information agent is di�erent from an inter-face agent in that an information agent is tied more closely to the data thatit is providing, while an interface agent closely interacts with the user. Typ-ically, a single information agent will serve the information needs of manyother agents (humans or intelligent software agents). An information agentis also quite di�erent from a typical World Wide Web (WWW) service thatprovides data to multiple users. Besides the obvious interface di�erences, aninformation agent can reason about the way it will handle external requestsand the order in which it will carry them out (WWW services are typicallyblindly concurrent). Moreover, information agents not only perform infor-3

www.manaraa.com

mation gathering in response to queries but also can carry out long-terminteractions that involve monitoring the Infosphere for particular conditions,as well as information updating.In this paper, we report on our work on developing distributed collec-tions of intelligent software agents that cooperate asynchronously to performgoal-directed information retrieval and information integration in support ofperforming a variety of decision making tasks [23, 2]. We have been devel-oping RETSINA, an open society of reusable agents that self organize andcooperate in response to task requirements. In particular, we will focus onthree crucial characteristics of the overall framework that di�erentiate ourwork from others:� ours is a multi-agent system where the agents operate asynchronouslyand collaborate with each other and their users,� the agents actively seek out information,� the information gathering is seamlessly integrated with problem solvingand decision supportWe will present the overall architectural framework, our agent designcommitments, and agent architecture to enable the above characteristics.We will draw examples from our work on Intelligent Agents in the domainsof organizational decision making (the PLEIADES system), and �nancialportfolio management (the WARREN system).The rest of the paper is organized as follows. Section 2 briey lists someagent characteristics we consider desirable. Section 3 motivates the dis-tributed architecture for intelligent information retrieval and problem solv-ing, and presents an overview of the system architecture, the di�erent typesof agents in the proposed multi agent organization, and agent coordinationmechanisms. Section 4 presents in detail the reusable agent architecture anddiscusses planning, control, and execution monitoring in agent operations.Description and examples from the application of RETSINA to everyday or-ganizational decision making and �nancial portfolio management are givenin Section 5. Section 6 presents concluding remarks.4

www.manaraa.com

2 Desirable Agent CharacteristicsMany di�erent de�nitions of intelligent agents have been proposed. In thissection, we give a brief list of what we see as essential characteristics ofintelligent agents.� taskable. By "taskable" we mean agents that can take direction fromhumans or other agents.� network-centric: by this we mean that agents should be distributed andself organizing. When situations warrant it, agent mobility may alsobe desirable.� semi-autonomous rather than under direct human control all the time.For example, in an information gathering task, because of the largeamount of potential requests for information, humans would be swamped,if they had to initiate every single information request. The amount ofagent autonomy should be user controllable.� persistent, i.e. capable of long periods of unattended operation.� trustworthy: An agent should serve users' needs in a reliable way sothat users will develop trust in its performance.� anticipatory: An agent should anticipate user information needs throughtask, role and situational models as well as learning to serve as an in-telligent cache, acquiring and holding information likely to be needed.� active: An agent should initiate problem solving activities (e.g. mon-itor the infosphere for the occurrence of given patterns), anticipateuser information needs and bring to the attention of users situation-appropriate information, deciding when to fuse information or present"raw" information.� collaborative with humans and with other machine agents. Collabora-tive agent interactions allow them to increase their local knowledge,resolve conicts and inconsistencies in information, current task andworld models, thus improving their decision support capabilities.5

www.manaraa.com

� able to deal with heterogeneity of other agents and information re-sources.� adaptive to changing user needs, and task environment.3 Distributed Intelligent Agents in Informa-tion Processing and Problem SolvingIn this section, we motivate and describe the distributed agent framework forintelligent information retrieval and problem solving, and then present theagent coordination mechanisms. The issues of how to engineer these agentsare the topics of Section 4. RETSINA has been motivated by the followingconsiderations:� Distributed information sources: Information sources available on-lineare inherently distributed. Furthermore, these sources typically areof di�erent modalities. Therefore it is natural to adopt a distributedarchitecture consisting of many software agents specialized for di�erentheterogeneous information sources.� Sharability: Typically, user applications need to access several servicesor resources in an asynchronous manner in support of a variety of tasks.It would be wasteful to replicate agent information gathering or prob-lem solving capabilities for each user and each application. It is desir-able that the architecture support sharability of agent capabilities andretrieved information.� Complexity hiding: Often information retrieval in support of a taskinvolves quite complex coordination of many di�erent agents. To avoidoverloading the user with a confusing array of di�erent agents andagent interfaces, it is necessary to develop an architecture that hidesthe underlying distributed information gathering and problem solvingcomplexity from the user.� Modularity and Reuseability: Although software agents will be operat-ing on behalf of their individual patrons|human users, or other agents,pieces of agent code for a particular task can be copied from one agent6

www.manaraa.com

to another and can be customized for new users to take into consid-eration particular users' preferences or idiosyncrasies. One of the ba-sic ideas behind the distributed agent-based approach is that softwareagents will be kept simple for ease of maintenance, initialization andcustomization. Another facet of reuseability is that pre-existing infor-mation services, whose implementation, query language and communi-cation channels are beyond the control of user applications, could beeasily incorporated in problem-solving.� Flexibility: Software agents can interact in new con�gurations \on-demand", depending on the information requirements of a particulardecision making task.� Robustness: When information and control is distributed, the systemis able to degrade gracefully even when some of the agents are out ofservice temporarily. This feature of the system has signi�cant practicalimplications because of the dynamic and unstable nature of on-lineinformation services.� Quality of Information: The existence of (usually partial) overlappingof available information items from multiple information sources of-fers the opportunity to ensure (and probably enhance) the correctnessof data through cross-validation. Software agents providing the samepiece of information can interact and negotiate to �nd the most accu-rate data.� Legacy Data: Many information sources exist prior to the emergenceof the Internet-based agent technology. New functionalities and accessmethods are necessary for them to become full-edged members of thenew information era. Directly updating these systems, however, is anontrivial task. A preferable way of updating is to construct agentwrappers around existing systems. These agent wrappers interface tothe information sources and information consumers and provide a uni-form way of accessing the data as well as o�er additional functionalitiessuch as monitoring for changes. This agent wrapper approach o�ersmuch exibility and extensibility. Practically speaking, it is also easierto implement since the internal data structure and updating mechanismof the legacy information systems don't need to be modi�ed.7

www.manaraa.com

The above considerations clearly motivate the development of systems ofdistributed software agents for information gathering and decision supportin the Internet-based information environment. The critical question thenis how to structure and organize these multiple software agents. Our majorresearch goal is to construct reusable software components in such a waythat building software agents for new tasks and applications and organizingthem can be relatively easy. It seems di�cult to engineer a general agentparadigm which can cover in an e�cient manner a broad range of di�er-ent tasks including interaction with the user, acquisition of user preferences,information retrieval, and task-speci�c decision making. For example, inbuilding an agent that is primarily concerned with interacting with a humanuser, we need to emphasize acquisition, modeling and utilization of user in-formation needs and preferences. On the other hand, in developing an agentthat interacts with information sources, issues of acquiring user preferencesare de-emphasized and, instead, issues of information source availability, e�-ciency of data access, data quality and information source reliability becomecritical. Therefore, reusable software components must e�ciently addressthe critical issues associated with each of these three agent categories.3.1 Agent TypesIn the RETSINA framework, each user is associated with a set of agentswhich collaborate to support him/her in various tasks and act on the user'sbehalf. The agents are distributed and run across di�erent machines. Theagents have access to models of the user and of other agents as well as thetask and information gathering needs associated with di�erent steps of thetask. Based on this knowledge, the agents decide how to decompose anddelegate tasks, what information is needed at each decision point, and whento initiate collaborative searches with other agents to get, fuse and evaluatethe information. In this way, the information gathering activities of theagents are automatically activated by models of the task and processing needsof the agents rather than wholly initiated by the user. The user can leavesome of the information gathering decisions to the discretion of the agents.This saves user time and cognitive load and increases user productivity. Thedegree of agent autonomy is user-controlled. As a user gains more con�dencein the agents' capabilities, more latitude over decisions is given over to them.During search, the agents communicate with each other to request or provide8

www.manaraa.com

information, �nd information sources, �lter or integrate information, andnegotiate to resolve conicts in information and task models. The returnedinformation is communicated to display agents for appropriate display to theuser.RETSINA has three types of agents (see Figure 1): interface agents,task agents and information agents. Interface agents interact with the userreceiving user speci�cations and delivering results. They acquire, model andutilize user preferences to guide system coordination in support of the user'stasks. For example, an agent that �lters electronic mail according to itsuser's preferences is an interface agent. The main functions of an interfaceagent include: (1) collecting relevant information from the user to initiate atask, (2) presenting relevant information including results and explanations,(3) asking the user for additional information during problem solving, and(4) asking for user con�rmation, when necessary. From the user's viewpoint,having the user interact only through a relevant interface agent for a taskhides the underlying distributed information gathering and problem solvingcomplexity and frees the user from having to know of, access and interactwith a potentially large number of task agents and information seeking agentsin support of a task. For example, the task of hosting a visitor in a university(see Section 5.1), one of the tasks supported by our intelligent agents, involvesmore than 10 agents. However, the user interacts directly only with thevisitor hoster interface agent.Task agents support decision making by formulating problem solvingplans and carrying out these plans through querying and exchanging in-formation with other software agents. Task agents have knowledge of thetask domain, and which other task assistants or information assistants arerelevant to performing various parts of the task. In addition, task assistantshave strategies for resolving conicts and fusing information retrieved by in-formation agents. A task agent performs most of the autonomous problemsolving. It exhibits a higher level of sophistication and complexity than ei-ther an interface or an information agent. A task agent (1) receives userdelegated task speci�cations from an interface agent, (2) interprets the spec-i�cations and extracts problem solving goals, (3) forms plans to satisfy thesegoals, (4) identi�es information seeking subgoals that are present in its plans,(5) decomposes the plans and coordinates with appropriate task agents orinformation agents for plan execution, monitoring and results composition.An example of a task agent from the �nancial portfolio management domain9

www.manaraa.com

is one that makes recommendations to buy or sell stocks.Information agents provide intelligent access to a heterogeneous collectionof information sources depicted at the bottom of Figure 1. Information agentshave models of the associated information resources, and strategies for sourceselection, information access, conict resolution and information fusion. Forexample, an agent that monitors stock prices of the NewYork Stock Exchangeis an information agent. An information agent's activities are initiated eithertop down, by a user or a task agent through queries, or bottom up throughmonitoring information sources for the occurrence of particular informationpatterns (e.g., a particular stock price has exceeded a prede�ned threshold).Once the monitored-for condition has been observed, the information agentsends noti�cation messages to agents that have registered interest in theoccurrence of particular information patterns (See Section 5.2). For example,in the �nancial domain, a human or machine agent may be interested in beingnoti�ed every time a given stock price has risen by 10%. Thus, informationagents are active, in the sense that they actively monitor information sourcesand proactively deliver the information, rather than just waiting for andservicing one-shot information queries.An information agent may receive in messages from other agents threeimportant types of goals: (1) Answering a one-shot query about associatedinformation sources, (2) Answering periodic queries that will be run repeat-edly, and the results sent to the requester each time (e.g., \tell me the priceof IBM every 30 minutes"), and (3) Monitoring an information source fora change in a piece of information (e.g., \tell me if the price of IBM dropsbelow $80 within 15 minutes of the occurrence of that event").A useful capability that can be added to all types of agents is learning.The agents can retain useful information from their interactions as trainingexamples and utilize various machine learning techniques to adapt to newsituations and improve their performance [18, 26, 16].3.2 Agent Organization and CoordinationIn RETSINA, agents are distributed across di�erent machines and are di-rectly activated based on the top-down elaboration of the current situation(as opposed to indirect activation via manager or matchmaker agents [12],10

www.manaraa.com

Resolution

TaskAgent j

Info Source 2

Conflict

USER 1 USER 2 USER h

query answer

Information

Request
Reply

Collaborative

Query Processing

Interface Agent 2

TaskAgent 1

Interface Agent k

InfoAgent 1 InfoAgent 2

Task

Interface Agent 1

Goals and Task
Specifications

Results

Info Source 1 Info Source n

InfoAgent m

Information Integration

Task
Proposed Solution

Info Source 3Figure 1: The RETSINA Distributed Agent Organization11

www.manaraa.com

or self-directed activation)1. These agent activations dynamically form anorganizational structure \on-demand" that �ts in with the task, the user'sinformation needs and resulting decomposed information requests from re-lated software agents. This task-based organization may change over time,but will also remain relatively static for extended periods. Notice that theagent organization will not change as a result of appearance or disappear-ance of information sources but the agent interactions could be a�ected byappearance (or disappearance) of agents that are capable of ful�lling tasksubgoals in new ways. Information that is important for decision-making(and thus might cause an eventual change in organizational structuring) ismonitored at the lowest levels of the organization and passed upward whennecessary. In this type of organization, task-speci�c agents continually inter-leave planning, scheduling, coordination, and the execution of domain-levelproblem-solving actions.This system organization has the following characteristics:� There is a �nite number of task agents that each agent communicateswith.� The task agents are eventually responsible for resolving informationconicts and integrating information from heterogeneous informationsources for their respective tasks.� The task agents are responsible for activating relevant informationagents and coordinating the information �nding and �ltering activityfor their task.In our organization, the majority of interactions of interface agents arewith the human user, the most frequent interactions of information agentsare with information sources, whereas task agents spend most of their pro-cessing interacting with other task agents and information agents. We brieydescribe the distributed coordination processes. When a task-speci�c agentreceives a task from an interface agent or from another task-speci�c agent,it decomposes the task based on the domain knowledge it has and then del-egates the subtasks to other task-speci�c agents or directly to information-speci�c agents. The task-speci�c agent will take responsibility for collectingdata, resolving conicts, coordinating among the related agents and reporting1Matchmaking is, however used for locating agents.12

www.manaraa.com

to whoever initiated the task. The agents who are responsible for assignedsub-tasks will either decompose these sub-tasks further, or perform data re-trieval (or possibly other domain-speci�c local problem solving activities).When information sources are partially replicated with varying degreesof reliability, cost and processing time, information agents must optimizeinformation source selection. If the chosen information sources fail to providea useful answer, the information agent should seek and try other sources tore-do the data query. Because of these complexities, we view informationretrieval as a planning task itself[11]. The plans that task-speci�c agentshave (see 4) include information gathering goals, which, in turn are satis�edthrough relevant plans for information retrieval. This type of intelligentagent di�ers from traditional AI systems since information-seeking duringproblem solving is an inherent part of the system. In e�ect, the planning andexecution stages are interleaved since the retrieved information may changethe planner's view of the outside world or alter the planner's inner beliefsystem.Information is �ltered and fused incrementally by information or taskagents as the goals and plans of the various tasks and subtasks dictate, be-fore it is passed on to other agents. This incremental information fusionand conict resolution increases e�ciency and potential scalability (e.g., in-consistencies detected at the information-assistant level may be resolved atthat level and not propagated to the task agent level) and robustness (e.g.,whatever inconsistencies were not detected during information assistant in-teraction can be detected at the task-assistant level). A task agent can besaid to be proactive in the sense that it actively generates information seekinggoals and in turn activates other relevant agents.Obviously, one of the major issues involved in multi-agent systems is theproblem of interoperability and communication between the agents. In ourframework, we use the KQML language [7] for inter-agent communication.In order to incorporate and utilize pre-existing software agents or informa-tion services that have been developed by others, we adopt the followingstrategy: If the agent is under our control, it will be built using KQML as acommunication language. If not, we build a gateway agent that connects thelegacy system to our agent organization and handles di�erent communicationchannels, di�erent data and query formats, etc.In open world environments, agents in the system are not statically pre-de�ned but can dynamically enter and exit an organization. This necessi-13

www.manaraa.com

tates mechanisms for agent locating. This is a challenging task, especially inenvironments that include large numbers of agents, and where informationsources, communication links and/or agents may be appearing and disap-pearing. We have made initial progress in implementing matchmaker agents[12, 3] that act as yellow pages[9]. When an agent is instantiated, it ad-vertises its capabilities to a matchmaker. An agent that is looking to �ndanother that possesses a particular capability (e.g. can supply particularinformation, or achieve a problem solving goal) can query a matchmaker.The matchmaker returns appropriate lists of agents that match the querydescription, or "null" if it does not currently know of any agent that has thiscapability. Architecturally, matchmakers are information agents. A match-maker is an information agent who can �nd other agents rather than �ndingpieces of information. One nice property that falls out of this matchmakerdesign is that, if currently a matchmaker does not know of any agent thatcan provide a particular requested service, the requesting agent can place amonitoring request that directs the matchmaker to keep looking for an agentwhose advertised capability matches the service speci�cation of the request-ing agent (the customer). When the matchmaker �nds such an appropriateagent, it noti�es the customer.Matchmaking is advantageous since it allows a system to operate robustlyin the face of agent appearance and disappearance, and intermittent com-munications (the customer can go back to the matchmaker, looking for anew supplier agent). Matchmaking is signi�cant in another respect: it laysthe foundation for evolutionary system design where agents with enhancedcapabilities can be gracefully integrated into the system.4 Agent Engineering: How To Structure AnAgent?In order to operate in rich, dynamic, multi-agent environments, softwareagents must be able to e�ectively utilize and coordinate their limited com-putational resources. As our point of departure in structuring an agent, weuse the Task Control Architecture [21] and TAEMS [4], which we extend andspecialize for real-time user interaction, information gathering, and decisionsupport. 14

www.manaraa.com

Execution
Monitoring

Domain-Independent Control Constructs

Knowledge

Task

Tree

Planning

Scheduling

Plan Fragments

Communication
& Coordination

Beliefs, Facts Base

Agent

Domain-Specific

Domain-Independent
Plan Fragments

Figure 2: The Agent Architecture: A Functional View
15

www.manaraa.com

The planning module takes as input a set of goals and produces a planthat satis�es the goals. The agent planning process is based on a hierarchicaltask network (HTN) planning formalism. It takes as input the agent's currentset of goals, the current set of task structures, and a library of task reductionschemas. A task reduction schema presents a way of carrying out a taskby specifying a set of sub-tasks/actions and describing the information-owrelationships between them. That is, the reduction may specify that theresult of one sub-task (e.g. deciding the name of an agent) be provided asan input to another sub-task (e.g. sending a message). Actions may requirethat certain information be provided before they can be executed, and mayalso produce information upon execution. For example, the act of sending aKQML messages requires the name of the recipient and the content of themessage, while the act of deciding to whom to send some message wouldproduce the name of an agent. An action is enabled when all the requiredinputs have been provided. (See [24] for a complete description of our tasknetwork representation.)The communication and coordinationmodule accepts and interprets mes-sages from other agents in KQML. In addition, interface agents also acceptand interpret e-mail messages. We have found that e-mail is a convenientmedium of communicating with the user and/or other interface agents, forexample agents that provide event noti�cation services. Messages can containrequest for services. These requests become goals of the recipient agent.The scheduling module schedules each of the plan steps. The agentscheduling process in general takes as input the agent's current set of planinstances, in particular, the set of all executable actions, and decides whichaction, if any, is to be executed next. This action is then identi�ed as a�xed intention until it is actually carried out (by the execution component).Whereas for task agents, scheduling can be very sophisticated, in our currentimplementation of information agents, we use a simple earliest-deadline-�rstschedule execution heuristic.To operate in the uncertain, dynamic Infosphere, software agents mustbe reactive to change for robustness and e�ciency considerations. Agentreactivity considerations are handled by the execution monitoring process.Execution monitoring takes as input the agent's next intended action andprepares, monitors, and completes its execution. The execution monitorprepares an action for execution by setting up a context (including the resultsof previous actions, etc.) for the action. It monitors the action by optionally16

www.manaraa.com

providing the associated computation limited resources|for example, theaction may be allowed only a certain amount of time and if the action doesnot complete before that time is up, the computation is interrupted and theaction is marked as having failed.When an action is marked as failed, the exception handling process takesover to replan from the current execution point to help the agent recoverfrom the failure. For instance, when a certain external information source isout of service temporarily, the agent who needs data from this informationsource shouldn't just wait passively until the service is back. Instead, theagent might want to try another information source or switch its attentionto other tasks for a certain period of time before returning to the originaltask.The agent has a domain-independent library of plan fragments (task struc-tures) that are indexed by goals, as well as domain-speci�c library of planfragments from which plan fragments can be retrieved and incrementally in-stantiated according to the current input parameters. The retrieved andinstantiated plan fragments are used to form the agent's instantiated tasktree that is incrementally executed.The belief and facts data structures contain facts and other knowledgerelated to the agent's functionality. For example, the belief structures ofan interface agent contain the user pro�le, and the belief structures of aninformation agent contain a local data base that holds relevant records ofexternal information sources the agent is monitoring. Since an informationagent does not have control of information sources on the Internet, it mustretrieve and store locally any information that it must monitor. For example,suppose an information agent that provides the New York Stock Exchangedata is monitoring the Security APL Quote Server web page to satisfy anotheragent's monitoring request, for example, \notify me when the price of IBMexceeds $80". The information agent must periodically retrieve the price ofIBM from the Security APL web page, bring it to its local data base andperform the appropriate comparison. For information agents, the local database is a major part of their reusable architecture. It is this local databasethat allows all information agents to present a consistent interface to otheragents, and re-use behaviors, even in very di�erent information environments[2].An agent architecture may also contain components that are not reusable.For example, the architecture of information agents contains a small amount17

www.manaraa.com

of site-speci�c external query interface code. The external query interface isresponsible for actually retrieving data from some external source or sources.The external query interface is usually small and simple, thus minimizing theamount of site-speci�c code that must be written every time a new informa-tion agent is built.Since task structure management, planning, action scheduling, executionmonitoring, and exception handling are handled by the agent in a domain-independent way, all these control constructs are reusable. Therefore thedevelopment of a new agent is simpli�ed and involves the following steps:� Build the domain-speci�c plan library� Develop the domain-speci�c knowledge-base� Instantiate the reusable agent control architecture using the domain-speci�c plan library and knowledge-base5 Application DomainsWe have implemented distributed cooperating intelligent agents using theconcepts, architecture, and reusable components of the RETSINA multi-agent infrastructure for everyday organizational decision making and for �-nancial portfolio management.5.1 Everyday Organizational Decision MakingIn performing everyday routine tasks, people spend much time in �nding,�ltering, and processing information. Delegating some of the informationprocessing to Intelligent Agents could increase human productivity and re-duce cognitive load. To this end, recent research has produced agents fore-mail �ltering, [15], calendar management [5], and �ltering news [13]. Thesetasks involve a single user interacting with a single software agent. Thereare tasks, however, which have more complex information requirements andpossible interaction among many users. A distributed, multi-agent collectionof Intelligent Agents is then appropriate and necessary. Within the con-text of our PLEIADES project, we have applied the distributed RETSINAframework to multi user tasks of increased complexity, such as18

www.manaraa.com

� distributed, collaborative meeting scheduling among multiple humanattendees [14, 8]� �nding people information on the Internet� hosting a visitor to Carnegie Mellon University [22]� accessing and �ltering information about conference announcementsand requests for proposals (RFPs) from funding organizations and no-tifying Computer Science faculty of RFPs that suit their research in-terests [18].5.1.1 An Extended Example: The Visitor Hosting TaskWe will use the task of hosting a visitor to Carnegie Mellon University (CMU)as an illustrative example of system operation. Hosting a visitor involvesarranging the visitor's schedule with faculty whose research interests matchthe interests that the visitor has expressed in his/her visit request. A di�erentvariation of the hosting visitor task has also been explored in [10].For expository purposes, we refer to the collection of agents that are in-volved in the visitor hosting task as the V isitor Hosting system. The VisitorHosting system takes as input a visit request, the tentative requested daysfor the meeting and the research interests of the visitor. Its �nal output isa detailed schedule for the visitor consisting of time, location and name ofattendees. Attendees in these meetings are faculty members whose interestsmatch the ones expressed in the visitor's request and who have been automat-ically contacted by the agents in the Visitor Hosting system and have agreedto meet with the visitor at times convenient for them. The Visitor Host-ing system has an interface agent, referred to as the Visitor Hoster, whichinteracts with the person hosting the visit. It also has the following taskagents: (1) a Personnel Finder task agent, who �nds detailed informationabout the visitor, and also �nds detailed information about CMU faculty forbetter matching the visitor and the faculty he/she meets, (2) the visitor'sScheduling task agent and (3) various personal calendar management taskagents that manage calendars of various faculty members. In addition, theVisitor Hosting system has a number of information agents that (1) retrieveinformation from a CMU data base that has faculty research interests (Inter-19

www.manaraa.com

ests agent), and (2) retrieve personnel and location information from variousuniversity data bases.We present a detailed visitor hosting scenario to illustrate the interactionsof the various agents in the Visitor Hosting task.� The user inputs a visitor request to the Visitor Hoster agent.Suppose Marvin Minsky wants to visit CMU CS department. Minskyhas requested that he would prefer to meet with CMU faculty inter-ested in machine learning. The user inputs relevant information aboutMinsky, such as �rst name, last name, a�liated organization, date andduration of his visit, and his preference as to the interests of faculty hewants to meet with, to the Visitor Hoster agent.� The Visitor Hoster agent extracts the visitor's areas of interest andvisitor's name and organization.� The Visitor Hoster agent passes to the Interests agent the visitor's areasof interest and asks the Interest agent to �nd faculty members whoseinterest areas match the request.� The Visitor Hoster agent passes the name and organization of the vis-itor to the Personnel Finder agent and asks it to �nd additional infor-mation about the visitor.� The Personnel Finder agent accesses Internet resources to �nd re-quested information about the visitor, such as visitor's title, rank, o�ceaddress etc. The visitor information is used by faculty calendar soft-ware agents, such as CAP (see [16]), to decide level of interest of afaculty member to meet with the visitor.� Meanwhile, the Interests agent queries the faculty interests data baseand returns names of CMU faculty whose research matches the request.Using \machine learning" as the keyword to search through faculty in-terests database, the Interests agent �nds a list of faculty whose interestareas match machine learning.� The Visitor Hoster agent passes the returned faculty names to thePersonnel Finder agent requesting more information on these faculty.20

www.manaraa.com

� The Personnel Finder agent submits queries to three personnel infor-mation sources (finger, CMU Who's-Who, CMU Room Database) to�nd more detailed information about the faculty member (e.g., rank,telephone number, e-mail address), resolves ambiguities in the returnedinformation, and integrates results.
Sources: Personnel Info for Tom Mitchell

Info-Attribute-Name Who-is-Who Room-Database Finger

 department

 position

 office

 email

 secretary

 research Figure 3: Information Sources and Returned ItemsFigure 3 shows in detail the information sources used for querying per-sonnel information about Tom Mitchell, one of the Machine Learningfaculty found by the Interests agent, and the information attributes re-turned by these sources. The columns correspond to di�erent informa-tion sources. The rows are the attributes of personnel information thatcan be obtained from the sources. The checks and cross marks indicatewhich information sources return answers for which attributes. Fromthis �gure, we observe that for some information attributes (e.g., of-�ce room number), more than one information source (Room Databaseand finger) o�er answers, which may be potentially conicting. Toresolve this conict, the Personnel Finder applies one of the rules keptin its domain-speci�c knowledge base saying that the o�ce information21

www.manaraa.com

based on Room Database is always more relevant and up-to-date thanother sources. In this case, the value as to o�ce room number returnedby finger is overruled by the one returned by Room Database (indi-cated by the check mark). The cross mark in the \O�ce" row and\CS-FINGER" column means that although finger �nds the o�ceinformation, the retrieved value is overruled by another informationsource (Room Database).� Based on the information returned by the Personnel Finder, the VisitorHoster agent selects an initial set of faculty to be contacted. The usercan participate in this selection process.� The Visitor Hoster agent automatically composes messages to the cal-endar assistant agents of the selected faculty asking whether they arewilling to meet with the visitor and at what time. For those faculty thatdo not have machine calendar agents, e-mail is automatically composedand sent.� The Visitor Hoster agent collects responses and passes them to thevisitor's Scheduling agent.� The visitor's Scheduling agent composes the visitor's schedule throughsubsequent interaction and negotiation of scheduling conicts with theattendees' calendar management agents2. The �nal calendar is shownin Figure 4.The Visitor Hosting system has many capabilities. It automates informa-tion retrievals in terms of �nding personnel information of potential appro-priate meeting attendees. It accesses various on-line public databases andinformation resources at the disposal of the visit organizer. It integratesthe results obtained from various databases, clari�es ambiguities (e.g., thesame entity can be referred by di�erent names in di�erent partially replicateddata bases) and resolves the conicts which might arise from inconsistencybetween information resources. It creates and manages the visitor's sched-ule as well as the meeting locations for the various appointments with thefaculty members (e.g., a faculty's o�ce, a seminar room). It interacts withthe user, getting user input, con�rmation or dis-con�rmation of suggestions,2For details on the distributed meeting scheduling algorithm, see [14, 8].22

www.manaraa.com

Figure 4: Final Schedule of Minsky's Visit
23

www.manaraa.com

asking for user advice and advising the user of the state of the system andits progress.5.2 Financial Portfolio ManagementThe second domain of applying the RETSINA framework is �nancial port-folio management (the WARREN system 3). In current practice, portfoliomanagement is carried out by investment houses that employ teams of spe-cialists for �nding, �ltering and evaluating relevant information. Based ontheir evaluation and on predictions of the economic future, the specialistsmake suggestions about buying or selling various �nancial instruments, suchas stocks, bonds, mutual funds etc. Current practice as well as softwareengineering considerations motivate our multi-agent system architecture. Amulti-agent system approach is natural for portfolio management because ofthe multiplicity of information sources and the di�erent expertise that mustbe brought to bear to produce a good recommendation (e.g. a stock buy orsell decision).The overall portfolio management task has several component tasks. Theseinclude eliciting (or learning) user pro�le information, collecting informationon the user's initial portfolio position, and suggesting and monitoring a re-allocation to meet the user's current pro�le and investment goals. As timepasses, assets in the portfolio will no longer meet the user's needs (and theseneeds may also be changing as well). Our initial system focuses on the on-going portfolio monitoring process.We briey describe the main agents in the portfolio management task,shown in �gure 5:The portfolio manager agent is an interface agent that interacts graph-ically and textually with the user to acquire information about the user'spro�le and goals. The fundamental analysis agent is a task assistant thatacquires and interprets information about a stock from the viewpoint of astock's (fundamental) \value". Calculating fundamental value takes intoconsideration information such as a company's �nances, forecasts of sales,earnings, expansion plans etc. The Technical Analysis agent uses numericaltechniques such as moving averages, curve �tting, complex stochastic models,3The system is named after Warren Bu�et, a famous American investor and authorabout investment strategies. 24

www.manaraa.com

Historical

InformationTracker

Filings
Market

Tracker

News

Classifier

Economic
Indicator
Tracker

Technical

Agent
Analysis

Analyst

market

Agent

Fundamental
Analysis

Agent

SEC

Tracking

USER 1 USER 2 USER h

Infosphere

Tracker

Ticker

Earnings
Analysis

Agent

Breaking

Agent
News

Portfolio
Manager

Agent

Figure 5: The Portfolio Management Application25

www.manaraa.com

neural nets etc., to try to predict the near future in the stock market. TheBreaking News agent tracks and �lters news stories and decides if they areso important that the user needs to know about them immediately, in thatthe stock price may be immediately a�ected. The Analyst Tracking agenttries to gather intelligence about what human analysts are thinking about acompany. These agents gather information through information requests toinformation agents. The information agents that we have currently imple-mented are the Stock Tracker agents that monitors stock reporting Internetsources, such as the Security APL, the News Tracking agents that track and�lter Usenet relevant �nancial news articles (including CMU's Clarinet andDow Jones news feeds), and the SEC (Securities and Exchange Commission)�llings of companies �nancial information tracker agent that monitors theEDGAR database. The information retrieved by these information agentsis passed to the display agents which display in an integrated fashion theretrieved information to the user.Figure 6 shows an example WARREN portfolio. Currently, a user mayinteract with his or her own portfolio display (interface) agent via HTMLforms and a web browser.4 The portfolio display consists of a summary ofthe user's portfolio, including which issues are owned, and for each issuethe total number of shares owned, the current price, the date of the lastnews article, and the current value. Below the portfolio table, the currentvalue of the entire portfolio is displayed along with the portfolio's net gain inequity (current values compared to purchase values minus commissions). Theinterface also allows the user to buy and sell stocks (Trade) and to request thepreparation of a Financial Data Summary (Fetch FDS), which uses historicalprice, earnings, and revenue information from the SEC's EDGAR databaseto do a simple fundamental analysis of the stock.The other display available to the user (by clicking on a stock's cur-rent value) is a price/news graph that dynamically integrates intra-day trad-ing prices and news stories about a stock. Figure 7 shows an example forNetscape Communications (NSCP) during the period of roughly December 5to December 23. Prices are plotted at mostly 1 hour (sometimes 15 minute)intervals, and connected during the trading day (there's no trading at nightor during the weekends). The numbers on the graphs correspond to the newsarticles whose subjects are listed below the graph. The articles are numbered4We are currently constructing a more interactive Java interface.26

www.manaraa.com

Figure 6: WARREN's Netscape interface.
27

www.manaraa.com

from earliest to latest (left to right on the graph). Each article number ispositioned at the time the news story appeared, and vertically at the approx-imate price of the stock at that time. The article subjects are hyperlinkedto the actual news stories themselves.The example graph covers a time period just after the $30 price rise inNSCP triggered by the joint Sun and Netscape announcement of JavaScript(2). However, the new record high caused some pro�t-taking, and then theDec 7 news hits that Smith Barney had begun coverage of Netscape and rec-ommended SELL (4,5), dropping the stock for the rest of the day. Althoughour University access is to delayed price and news sources, such informationfrom realtime data feeds is the bread and butter of many types of institutionalinvestment decision-making.6 ConclusionsIn this paper, we have described our implemented, distributed agent frame-work, RETSINA, for structuring and organizing distributed collections ofintelligent software agents in a reusable way. We presented the variousagent types that we believe are necessary for supporting and seamlessly in-tegrating information gathering from distributed internet-based informationsources and decision support, including (1) Interface agents which interactwith the user by receiving user speci�cations and delivering results, (2) Taskagents which help users perform tasks by formulating problem solving plansand carrying out these plans through querying and exchanging informationwith other software agents, and (3) Information agents which provide in-telligent access to a heterogeneous collection of information sources. Wehave also described and illustrated our implemented, distributed system ofsuch collaborating agents. We believe that such exible distributed architec-tures, consisting of reusable agent components, will be able to answer manyof the challenges that face users as a result of the availability of the vast,new, net-based information environment. These challenges include locating,accessing, �ltering and integrating information from disparate informationsources, monitoring the Infosphere and notifying the user or an appropriateagent about events of particular interest in performing the user-designatedtasks, and incorporating retrieved information into decision support tasks.28

www.manaraa.com

Figure 7: A Price/News graph constructed by the WARREN system forNetscape Communications (ticker symbol NSCP).29

www.manaraa.com

7 AcknowledgementsThe current research has been sponsored in part by ARPA Grant #F33615-93-1-1330, by ONR Grant #N00014-95-1-1092, and by NSF Grant #IRI-9508191. We want to thank Tom Mitchell, Dana Freitag, Sean Slittery, andDavid Zabowski for insightful discussions.References[1] P. R. Cohen and H. J. Levesque. Intention=choice + commitment. InProceedings of AAAI-87, pages 410{415, Seattle, WA., 1987. AAAI.[2] K. Decker, K. Sycara, and M. Williamson. Modeling information agents:Advertisements, organizational roles, and dynamic behavior. In Proceed-ings of the AAAI-96 Workshop on Agent Modeling, Portland, Oregon,August 1996. AAAI.[3] K. Decker, M. Williamson, and K. Sycara. Matchmaking and brokering.In Proceedings of the Second International Conference in Multi-AgentSystems (ICMAS'96), Kyoto, Japan, December 1996.[4] Keith Decker. Environment Centered Analysis and Design of Coordina-tion Mechanisms. PhD thesis, University of Massachusetts, 1995.[5] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and DavidZabowski. A personal learning apprentice. In Proceedings of the TenthNational Conference on Arti�cial Intelligence. AAAI, 1992.[6] Oren Etzioni and Daniel Weld. A softbot-based interface to the internet.Communications of the ACM, 37(7), July 1994.[7] Tim Finin, Rich Fritzson, and Don McKay. A language and protocol tosupport intelligent agent interoperability. In Proceedings of the CE andCALS Washington 92 Conference, June 1992.[8] Leonardo Garrido and Katia Sycara. Multi-agent meeting scheduling:Preliminary experimental results. In Proceedings of the Second Interna-tional Conference in Multi-Agent Systems (ICMAS'96), Kyoto, Japan,December 1996. 30

www.manaraa.com

[9] M. R. Genesereth and S. P. Katchpel. Software agents. Communicationsof the ACM, 37(7):48{53,147, 1994.[10] Henry A. Kautz, Bart Selman, and Michael Coen. Bottom-up design ofsoftware agents. Communications of the ACM, 37(7), July 1994.[11] Craig K. Knoblock. Integrating planning and execution for informationgathering. In Craig Knoblock and Alon Levy, editors, Working Notesof the AAAI Spring Symposium Series on Information Gathering fromDistributed, Heterogeneous Environments, Stanford, CA, March 1995.AAAI.[12] D. Kuokka and L. Harada. On using KQML for matchmaking. In Pro-ceedings of the First International Conference on Multi-Agent Systems,pages 239{245, San Francisco, June 1995. AAAI Press.[13] Kan Lang. Newsweeder: Learning to �lter netnews. In Proceedings ofMachine Learning Conference, 1995.[14] JyiShane Liu and Katia Sycara. Distributed meeting scheduling. InProceedings of the Sixteenth Annual Conference of the Cognitive ScienceSociety, Atlanta, Georgia, August 13-16 1994.[15] Pattie Maes. Agents that reduce work and information overload. Com-munications of the ACM, 37(7), July 1994.[16] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, andDavid Zabowski. Experience with a learning personal assistant. Com-munications of the ACM, 37(7), July 1994.[17] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooper-ative information gathering: A distributed problem solving approach.Technical Report 94-66, Department of Computer Science, Universityof Massachusetts, September 1994.[18] Anandeep Pannu and Katia Sycara. Learning text �ltering preferences.In 1996 AAAI Symposium on Machine Learning and Information Ac-cess, 1996. 31

www.manaraa.com

[19] Anand S. Rao and Michael P. George�. A model-theoretic approach tothe veri�cation of situated reasoning systems. In Proceedings of IJCAI-93, pages 318{324, Chambery, France, 28 August - 3 September 1993.IJCAI.[20] Y. Shoham. Agent-oriented programming. Arti�cial Intelligence,60(1):51{92, 1993.[21] Reid Simmons. Structured control for autonomous robots. IEEE Journalof Robotics and Automation, 1994.[22] Katia Sycara and Dajun Zeng. Towards an intelligent electronic secre-tary. In Proceedings of the CIKM-94 (International Conference on Infor-mation and Knowledge Management) Workshop on Intelligent Informa-tion Agents, National Institute of Standards and Technology, Gaithers-burg, Maryland, December 1994.[23] Katia Sycara and Dajun Zeng. Coordination of multiple intelligent soft-ware agents. International Journal of Cooperative Information Systems,To Appear, 1996.[24] M. Williamson, K. Decker, and K. Sycara. Uni�ed information andcontrol ow. In Proceedings of the AAAI-96 Workshop on Theories ofAction, Planning and Control: Bridging the Gap, Portland, Oregon,August 1996. AAAI.[25] M. Wooldridge and N. R. Jennings. Intelligent agents: Theory andpractice. The Knowledge Engineering Review, 10(2):115{152, 1995.[26] Dajun Zeng and Katia Sycara. Bayesian learning in negotiation. In1996 AAAI Symposium on Adaptation, Co-evolution and Learning inMultiagent Systems, 1996.
32

